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Introduction

A great deal has been written about the Colossus 
machines, but descriptions of their architecture and 
functioning are usually embedded in detailed his-
tories of code breaking techniques and the work of 
Bletchley Park. Although Colossus is usually called 
a computer, and sometimes claimed as “the first 
computer” (or, more precisely, as “the first program-
mable electronic computer”) it has not been clearly 
described from the viewpoint of computer architec-
ture. Claims that Colossus had a crucial and often 
overlooked place in the history of computing hinge 
on the idea that, if not decommissioned at the end 
of the war and kept secret for decades thereafter, the 
machines could have been applied to many comput-
ing tasks beyond the specific codebreaking work for 
which they were designed. This is a counterfactual 
discussion, but the validity of such claims depends 
on the extent to which Colossus had programming 

mechanisms that could be reconfigured to tackle 
scientific computing work. However, these program-
ming mechanisms have not been comprehensively 
described.

Most descriptions of Colossus begin with a mass 
of detail about code breaking techniques and work 
at Bletchley Park, focusing more on the details of 
codebreaking practice and the quirks of the Lorenz 
machines Colossus was designed to attack than on 
the capabilities of the Colossus machines themselves. 
Our original intention was to reverse the usual struc-
ture of Colossus discussion by presenting as little in-
formation as possible about codebreaking practice. 
Instead, we aimed to produce the “missing manual” 
for Colossus, explaining its capabilities and program-
ming mechanisms in general terms.1

1 This title is inspired by the “missing manual” series 
of books written by David Pogue and others in the early 
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As our research progressed we discovered that 
there was a good reason for the previous tendency 
to embed descriptions of Colossus deep within dis-
cussion of codebreaking techniques: Colossus was 
not programmable after all, and could not have use-
fully been applied to tasks other than attacking the 
specific cipher for which it was designed without 
considerable hardware modification. So we had to 
go much deeper than we originally anticipated into 
the details of codebreaking to make its capabilities 
and architecture fully comprehensible. Nevertheless, 
we have attempted to honor our original objective as 
far as possible. We begin with an abstract look at the 
Colossus family machines as information processing 
devices, describing Colossus as a bitstream processor 
before explaining, to the minimum extent necessary, 
its relationship to codebreaking practice and offering 
a range of codebreaking configurations as examples 
of how the Colossi were actually used. In further pub-
lications we plan to delve more deeply into that prac-
tice by exploring the full range of surviving Colossus 
output and associated materials.

1 The Colossus Family as Bitstream Processors

The details of how Bletchley Park managed to retrieve 
key sequences from encrypted messages, and so read 
Fish traffic, are fascinating but exceedingly complex. 
For the purposes of this report, it is enough to know 
that the machines in the Colossus family were origi-
nally designed to automate a particular operation 
within this complicated procedure. This involved 
combining bitstreams derived from a coded message 
with other bitstreams derived from simulated code 
wheels. At a functional level, then, we can view the 
Colossus family machines as bitstream processors.2

Considered as information processing devices the 
overall structure of the Colossus family machines was 
simple: they took bitstreams as input and produced 
counts as output. The relationship between the bit-
streams and the counts could be configured with a 
large and diverse assortment of controls, which com-
bined and transformed the inputs.

2000s, once hardware and software producers stopped in-
cluding printed manuals with their wares. Colossus, pre-
dating the long era of computer manuals, likewise lacked 
a comprehensive and clearly presented reference guide.
2 There is a precedent for this terminology in the cap-
tions that were added to the photographs of Colossus 
that GCHQ released in 1976, and in the 1973 history of 
Colossus prepared by GCHQ. The UK National Archives 
(hereafter “TNA”), FO 850/234 (“Annotated photographs 
of the COLOSSUS Electronic Digital Computer”) and HW 
25/24 (D. C. Horwood, “A Technical Description of Colos-
sus 1”).

Most Colossus family machines had two input 
streams3; each input stream consisted of 5 bitstreams 
which we refer to as the “channels” of the input 
stream. (In contemporary discussions, the five chan-
nels were called “impulses.”) The 5 channels allowed 
the encoding of the 32 characters in the conventional 
teleprinter alphabet used by the Germans but, as we 
discuss below, the machines treated the channels as 
independent streams.

At least one of the input streams was read at high 
speed from a paper tape loop. The source of the sec-
ond stream was the key difference between the Rob-
inson branch of the family and the Colossus branch. 
Robinsons read both streams optically from paper 
tape. Colossi generated the second stream electroni-
cally, based on bit patterns set up on control boards. 
Most Colossus family machines printed out poten-
tially relevant counts using a typewriter mechanism.

1.1 A Note on Terminology

It is not quite accurate to talk about the reading or 
combining units of Colossus family machines manip-
ulating characters or numbers. They processed each 
channel as an independent series of bits, rather than 
interpreting bits from different channels as charac-
ters or binary coded numbers.

Colossus read five channels from its paper tape, 
but it never combined these as the five constitu-
ent bits of a single number. In contrast, computers 
clump bits together in fixed-length chunks (such 
as 8-bits, 16-bits, and so on) to represent numbers. 
Each bit is conventionally represented as 1 or 0, but 
together 8 bits represent any number between 0 and 
255. The value of each bit depends on its position in 
the number being encoded, just as, in decimal num-
ber representation, the value of the number 5 differs 
according to whether it is placed in the tens column 
or the millions column. That number, in turn, might 
encode a letter or the color of an individual pixel. In 
contrast, the Colossi treated the bitstreams as logi-
cally separate data sources, and most jobs took as in-
put no more than two of the five bitstreams that col-
lectively encoded a single character in conventional 
teleprinter applications.

The machines detected holes and the absence 
of holes on punched tapes, and represented these 
two possibilities in various ways: the presence and 
absence of a pulse, for example, or the phase of an 
electrical signal. Individual bits were called “charac-
ters,” and rather than representing the two possible 
values of each “character” as 0 and 1, or as true and 

3 The exceptions here were some of the later Robinson 
machines, delivered in 1944, which could combine bits 
read from four tape drives.
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false, the users of Colossus referred to them as “dot” 
and “cross,” terms whose exact significance varied 
with context. Colossus could be set up to count either 
value, so did not inherently favor one interpretation 
over another.

Likewise, although the codebreakers used the 
conventional teleprinter alphabet to represent five-
channel bit patterns read from tape, primarily to rep-
resent distribution counts obtained for verification 
purposes, this was nothing more than an external 
notation: Colossus included no specific capabilities 
to manipulate characters.

As our aim here is to reconstruct the capabilities 
of Colossus as a computer, an irreducibly ahistorical 
project, we decided to adopt computing terminology 
by using “bit” for “character,” “channel” for “impulse,” 
1 for dot, and 0 for cross.

Even calling these signals “bits,” a term that origi-
nated as a contraction of “binary digit” is a little mis-
leading, however, as it might suggest that the Colos-
sus family represented numbers in a base 2 system. 
It’s worth emphasizing that this was not the case. 
Although the Bletchley Park mathematicians recog-
nized the similarity between the most important op-
eration on these bits and what they termed “modulo 
2 addition,” the bits themselves were semantically 
neutral representations of the two possible states of 
hole/no hole, or various other physical distinctions. 
The only place where numbers were stored was in the 
counters and in the uniselectors holding code wheel 
start positions, and here all the machines used deci-
mal (base 10) representations.

1.2 Heath Robinson: The Original Colossus Family 
Architecture

In this report, references to “Colossus family ma-
chines” include Robinson series machines as well as 
the ten Colossus machines themselves.4 There were 
many variants of Colossus and Robinson, but we 
focus here on the two best-documented: the Heath 
Robinson prototype that proved the workability of 
the Colossus family in the summer of 1943 and Colos-
sus 2, the template for the later Colossus machines, 
which went into action about a year later.

Heath Robinson was the very first machine, and it 
set the stage for all subsequent developments. Its ba-
sic architecture is preserved throughout, and many 
of the modifications in later machines were made in 
response to experience gained in using Heath Rob-
inson.

Heath Robinson defined the basic architecture of 
the Colossus family. It consisted of three main units. 

4 At the end of the war, 10 Colossi were in service and an 
eleventh was in the course of being assembled.

The tape reader was designed and built at the UK 
General Post Office’s research establishment at Dol-
lis Hill under the direction of Tommy Flowers. Coun-
ters were built at the Telecommunications Research 
Establishment (TRE) in Malvern under the direction 
of Charles Wynn Williams, a scientist and pioneer of 
electronic counter technology. Finally, the combining 
unit was a collaboration, designed by TRE but built 
at Dollis Hill. Once completed, these three units were 
delivered to Bletchley Park where the complete ma-
chine was put together and tested.

These three units are clearly visible in the Heath 
Robinson reconstruction at the UK’s National Mu-
seum of Computing (see Figure 1). The tape reader 
on the right senses bits punched onto the input tapes, 
and runs them into the combining unit in the center. 
This was often called the “valve rack,” after the Brit-
ish term for vacuum tubes. The selected inputs are 
combined according to the circuits wired on the plug 
board, and the results of the combination are routed 
into the counters in the left-most panel.

Logical connections between the units were fairly 
simple, as shown in the diagram below.

Readers: The Colossus family machines read five-
channel paper tape, of the kind used with teleprint-
ers. The machines were timed to the input tape(s), 
so a new processing cycle began each time the tape 
advanced. In the two-tape Robinsons, this meant 
that the two high-speed tape readers needed to be 

Fig. 1: The Heath Robinson reconstruction at the National 
Museum of Computing in 2015. Photograph: Mark Priestley.
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precisely synchronized, a challenging and problem-
atic task for the engineers. Heath Robinson read two 
consecutive bit positions from each tape simultane-
ously, so each reader had two sets of read heads, out-
putting a total of twenty bits. Specially placed holes 
on the tape marked the beginning and end of the se-
quence. The readers also detected these holes, which 
provided control information telling Heath Robinson 
when to start and stop processing the data from the 
bitstreams. These inputs let Heath Robinson track 
the current and starting position of each tape.

Combining Unit: At each cycle, then, Heath Robin-
son’s readers read four positions from its two five-
channel tapes. This delivered a total of 20 bits to 
the second main architectural component of Heath 
Robinson, the combining unit. This unit contained 
some rather idiosyncratic circuitry that allowed se-
lected input bits to be XORed together. Also described 
at Bletchley Park as modulo-2 addition, this was the 
basic logical operation required to carry out the ma-
chine’s principal cryptanalytic task. The design of 
these circuits also allowed other tasks to be plugged, 
such as counting the number of holes punched in a 
particular channel of the paper tape.

Counters: Each Colossus family machine had coun-
ters, used to accumulate the results transmitted on 
the output line(s) of the combining unit. Totals in-
creased when outputs from the combining units fired. 
Heath Robinson counted just one output from the 
combining unit, but alternated between two coun-
ters. A count completed every time the first tape loop 
reached a special stop market, indicating the end of 

the character stream. The total was displayed in one 
counter during the next revolution of the tape, as the 
new total accumulated in the other counter. Another 
pair of counters recorded the corresponding start po-
sitions of the second tape when the message on the 
first tape began again.5 Operators had to write down 
totals and start positions of interest quickly, before 
they were replaced by newer values. Heath Robinson 
ran its tapes at up to 2,000 characters per second, so 
a message of 6,000 characters would take only three 
seconds to read.

Robinson Algorithm: Most of the jobs run on the Co-
lossus family machines involved obtaining counts for 
different starting positions for the two input streams. 
Because it took only a few seconds to read the mes-
sage tape it was not practical to start and stop the ma-
chine each time the relative starting positions of the 
two input bitstreams had to be changed. Instead tape 
loops cycled continually.

This meant that the tapes had to be of particular 
lengths, to ensure that each time the first tape com-
pleted a revolution the second tape was in a start po-
sition that had not yet been evaluated. Heath Robin-
son operators used relatively prime lengths for the 
first input tape loops, to ensure that allowing both 
tapes to cycle continually would generate each pos-
sible start position for the second tape. When the two 

5 We are not sure whether the counter held the actual 
value of the start position of the second tape when the 
first tape last completed a revolution, or a count of some 
kind from which the start position could be derived.

Tape loop 1, �ve bit channels read from two successive positions
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Tape 2 start posn
(duplicated)

(end marker)(start marker)

(current counter frozen when end marker read)

(tape 2 position)

(tape 2 position stored when start market read)

Tape loop 2, �ve bit channels read from two successive positions

Plug board

Routes selected
inputs through
XOR gates to
produce a 
single output

Reading Unit Combining Unit Counting Unit

Fig. 2: Data flows within Heath Robinson, emphasizing its separation into three units for reading, combining, and counting.
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tapes started a cycle in the same position relative to 
each other they had been in at the beginning of the 
run that indicated that all possible combinations of 
start positions had been tested. The machine sensed 
this and set an indicator light, signaling the operator 
that the run was complete.

1.3 Colossus 2: The Colossus Architecture

Robinson’s two tapes gave great flexibility, but also 
brought problems. The tapes were liable to break or 
tear under the stress of high-speed rotation, and even 
when they didn’t break, synchronization was a persis-
tent problem. Added to that was the labor of produc-
ing the tapes and the difficulty of ensuring that they 
were error-free. The Colossus machines introduced 
a number of changes to the Robinson model, but the 
most significant was the replacement of Robinson’s 
second tape by internal circuitry that replicated the 
behavior of the Lorenz machines’ wheels.

There is a very clear distinction between the first 
Colossus and all the subsequent ones. The first was 
later sometimes referred to as a prototype, but the 
second (“Colossus 2”) was the template for all sub-
sequent machines, even though each had modifica-
tions and customizations for specific tasks. Colossus 2 
is the definitive Colossus architecture, described in 
the overwhelming majority of the secondary litera-
ture and reincarnated in the rebuild at the UK’s Na-
tional Museum of Computing (TNMOC). By contrast, 
Colossus 1 is rather poorly documented. Later Robin-
sons and Colossi acquired additional control panels 
to speed set up, and in some cases additional input 

and output devices (a reported tape punch for Colos-
sus 6, an extra two input tapes for Super Robinson). 
These are not well documented, but we know of no 
evidence that these tweaks changed the architecture 
or basic control capabilities of the machines. There-
fore we focus here on Colossus 2.

Unlike Heath Robinson the Colossus machines 
were designed and built entirely by the Post Office, 
as integrated machines rather than an assemblage 
of separately procured modules. Physically Colossus 
consisted of many panels integrated into two rows. 
The Colossus machines were more complicated than 
Heath Robinson, and used many more electronic 
components.

Logically, however, the basic architecture of the 
Robinsons remained intact despite a substantial in-
crease in the complexity of each of the three mod-
ules. Most significantly, data flows and control sig-
nals between them remained very constrained. The 
Colossus panels equivalent to Robinson’s combining 
unit, for example, had more inputs, more outputs, 
and many more ways of establishing connections 
between them. Yet it remained stateless: no informa-
tion from the examination of one set of inputs was 
retained when processing the next bit position from 
each input channel. The only course of action it could 
take based on its inputs was to increment one or more 
counters, but the contents of these counters could 
not be read back as inputs for the combining unit.

Readers: Like the Robinsons, the Colossus machine 
read a sequence of inputs from a five-channel “mes-
sage tape.” Instead of reading two consecutive bits 
from each channel, however, the reading unit was 

Tape loop, �ve bit channels read from one position only

Counters

(end marker)(start marker)

(counters compared to thresholds when end marker read)

(Code wheel start positions held in uniservos are copied to counting unit for printing each time the tape revolves)
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deltas or raw bits) to be digitally
mixed as Q bitstreams for
testing on Q panel.

Q Panel
Switches speciy common
logical tests on Q and R streams 
and which counter to route
the results of each test to.
 

Plug panel
aka “Jack Field”
Conditions set with jacks
and wires - more �exible
but more �ddly than Q panel.
Results also routed to counters.

(other controsl and indicators)

Reading & Generating Unit Combining Unit Counting Unit

(di�. between sucessive bits on all 5 channels)bu�er & XOR
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(& 2 hidden
“motor wheels”)

(di�. between sucessive bits from all 10 wheels)bu�er & XOR
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5-bit store
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to any wheel)(generates & stores additional 

four consecutive positions
from selected wheel sequence)

Printer

If at least one
counter exceeds
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code wheel
start positions
are printing
during the next
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Code wheel
start positions

(12 distinct values, of
two decimal digits
each, bu�ered for
printing)

R bitstream

Fig. 3: Data pathways between the three logical units of Colossus (includes the 5-bit buffer introduced with Colossus 2).
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augmented with five 1-bit buffers each storing the 
previous bit read from one of the channels. Rather 
than provide the combining unit with current and 
previous bits from each channel on the tape, as Heath 
Robinson did, Colossus used the buffers to provide 
the current bit and the delta (XOR) between this and 
the previous bit. The sprocket holes in the message 
tape were detected, and the resulting pulses used to 
time the operation of the machine. The tape included 
start and stop perforations, as before.

Colossus machines generated internally the data 
that would typically be stored on Robinson’s second 
input tape. They incorporated 12 “thyratron rings” 
each simulating one of the 12 encoding wheels of the 
Lorenz machine. These were configured in two ways. 
Firstly, the pattern of dots and crosses on each wheel 
was specified on special plugboards. Secondly, the 
starting position of each wheel was set by a switch. 
Other controls stored the initial start position and con-
trolled the stepping of each of the simulated wheels. 
Once Colossus sensed the end of the input stream on 
its tape it incremented the start position of the simu-
lated code wheels (in accordance with the stepping 
switches) and reset them, which had the effect of be-
ginning the second input sequence at a different point.

Inputs available to the combining unit represented 
the output of at least 10 of the simulated code wheels.6 
These signals were used to generate and output del-
tas between the current and previous bit positions on 
each wheel. So this part of Colossus passed at least 
20 bit channels on to the combining unit, as opposed 
to the 10 produced by Robinson’s wheel tape reader.

Colossus added a five-bit electronic buffer that 
could be switched to one of the electronically gen-
erated bit channels.7 This allowed users to test five 
consecutive positions for the corresponding code 
wheel each time the message tape looped, dramati-
cally speeding up some operations as the buffered 
code wheel’s starting position could then be stepped 
by five positions, rather than one, each time the tape 
was read.

Combining Unit: As in Robinson, the resulting bit-
streams were delivered to a plugboard where they 
could be combined in various ways. The range of op-
erations available on a Colossus plugboard was wider 
than the simple modulo-2 addition (XOR) provided 
by Robinson, providing “logical addition” (OR) as 
well as negations and the ability to replicate a bit-

6 All Colossus machines output current bits and deltas for 
the five chi and five psi wheels. Treatment of the two mo-
tor wheels seems to have varied as time went by, but later 
machines had some ability to work directly with them.
7 This buffer was not in the prototype Colossus, but was 
added for the second and subsequent models and may 
eventually have been retrofitted to the first model.

stream for multiple testing. These could be combined 
to implement (within the physical limitations of the 
machine, such as the number of gates of each kind) 
any desired truth table mapping inputs to output.

In addition to the plugboard, Colossus machines 
provided a “Q panel” on which some commonly used 
tests could be set up quickly using switches.8 A sepa-
rate set of mixer controls decided what combination 
of bitstream inputs should be combined for each of 
the five input channels of the Q panel. It supported 
two kinds of tests. Firstly, the five bits coming from 
the mixer could be tested for any desired pattern of 
dots and crosses. Secondly, any or all of the five bits 
could be added together, modulo 2, and the resulting 
sum tested to see if it was a dot or a cross. Conditions 
could also be set on the bits coming from the buffer.

Counting Unit: Whereas Heath Robinson had only 
one output from the combining unit, the Colossus 
machines had five, making it possible to carry out 
several logical tests simultaneously with the results 
routed to separate counters. Colossus printed its re-
sults using an electromatic typewriter, which was 
more reliable than the printer added to the produc-
tion Robinsons. Users set a threshold for each of the 
counters, above (or optionally below) which its con-
tents would be printed. Once the tape had been fully 
read, dedicated circuits compared the value stored in 
each counter to the corresponding threshold value. 
If the threshold condition was met, then Colossus 
printed the values stored in each counter, along with 
the starting positions of each simulated electronic 
code wheel. A “span control” feature added to later 
versions of Colossus suppressed counting except 
within a designated subset of the input stream.

Colossus Algorithm

As with Robinson, many runs on Colossus involved 
cycling the tape loop and tallying counts repeatedly, 
each time with different start positions for the second 
bitstream. The Robinson machines accomplished 
this with a minimum of control capabilities. As the 
appropriate sequence for the job had already been 
generated and punched onto tape, the only real con-
trol needed was an indicator that checked, each time 
the first tape returned to its start position, whether 
the second tape had also returned to its start position. 
This would indicate that the job was over.

Colossus generated the second bitstream inter-
nally, which made its algorithm rather more com-

8 The prototype Colossus did not contain the full Q panel, 
but some sources suggest that it had a more limited capa-
bility to set up logical tests with switches in addition to its 
plugboard.
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plex. As discussed in the next section, it did this by 
simulating electronically the movement of twelve 
code wheels present in the Lorenz coding machine 
Colossus was designed to target.

 In abstract terms, Colossus implemented a set of 
nested loops. The authors of this report disagree on 
the question of whether it is most informative to con-
sider the program carried out by Colossus as involv-
ing two levels or three levels of nested loops. We agree 
that Colossus effectively executed an inner loop ev-
ery time a new character position was read from the 
tape, and carried out a second level of looping by in-
crementing code wheel positions every time the mes-
sage tape was read. We disagree on whether the fact 
that Colossus could be configured to step some code 
wheels slowly, advancing them only when fast step-
ping wheels had returned to their start positions (like 
the relationship between the units and tens digits in a 
speedometer), justifies separating out the increment-
ing of slow and fast wheels as two separate levels of 
looping. Haigh focuses on the behavior of Colossus 
when slow and fast stepping are both used, likening 
it to a classic nested loop. Priestley feels that Colos-
sus's control circuits are more accurately modeled as 
two nested loops, and that, even though it may be an 
accurate functional model, the three-loop diagram 
gives the distinction between slow and fast stepping 
a prominence that it didn't have in either hardware or 
usage. Figure 4 reflects Haigh’s preference.

The inner loop repeated until the tape loop had 
been read in its entirety. This consisted, essentially, of 
a single operation. Once the tape reader signaled that 
a new character had been read, Colossus advanced 
the electronic code wheels to obtain the next position 
of the other five-channel input stream. It then fed the 
latest set of inputs through the combining unit, which 
evaluated the logic expression set up there. Colossus 
then incremented its counters based on the outputs of 
the combining unit, before settling down to wait for 
the next character to be read from tape.

The two other loops were concerned with the step-
ping of the simulated electronic code wheels. Colos-
sus systematically tested the tape input against dif-
ferent start positions in the electronically generated 
bitstreams. Before a job started the user would select 
initial start positions for each code wheel. Each time 
the tape loop was completely read, Colossus reset the 
code wheels to their current start positions. Before it 
did this it could increment the current start position 
of one or more of the code wheels.

A “fast stepping” wheel had its start position in-
cremented each time the tape loop was completely 
read. This corresponds to the middle loop. While in-
crementing the wheel’s start position Colossus would 
also compare the final values of the counters to the 
assigned thresholds. Any values to be printed were 
copied into a print buffer and the counters were then 
rest, ready for the next cycle of the tape.

A “slow stepping” wheel had its own start position 
incremented only when the fast stepping wheel’s start 
position had cycled all the way around and returned 
to its initial value. This corresponds to the outer loop.

If, after stepping, the current start positions of all 
fast and slow stepping wheels matched their initial 
start positions then the job was over. If no wheels 
were set to step then this would occur after a single 
cycle of the message tape. If there was a fast stepping 
wheel set for testing but no slow stepping wheel set 
for testing then this would occur in a minute or so, 
which was known as a “short run.” If one slow step-
ping wheel and one fast stepping wheel were both 
set for testing then the job might take ten or twenty 
minutes, which was known as a “long run.”9

In this sense the basic algorithm or program fol-
lowed by Colossus could not be changed by the user.10 
There were, as we discuss below, many parameters 
that could be altered: the logical conditions set in the 
combining unit for counting, the thresholds for print-
ing, the wheel stepping behavior, the span of tape in 
which counts were made. These all plugged values 
into specific steps of the algorithm. But none of them 
altered the basic sequence of operations hardwired 
into Colossus.

2 Decoding Tunny

So far we have described the Colossus machines in 
neutral terms, distinct from their applications. How-
ever, to describe Colossus in use and make sense of 
its specific capabilities we do need to say something 
about the code machine it targeted. Full details, and 
a historical narrative of the breaking of the Lorenz 
ciphers, are available in many other sources.

The Colossus family machines were developed as 
part of Bletchley Park’s attack on a family of German 
ciphers known as “Tunny” or, more generally, “Fish.” 
Encryption was performed automatically, by means 
of mechanical attachments to the standard teleprinter 
machines used by the German military command for 
long-distance communication. Messages could be 
punched on paper tape or transmitted directly by ra-
dio link. The Lorenz attachments encoded messages 
by generating a sequence of characters known as 

“key.” A message was encrypted by lining it up with 
a key sequence, combining each character with the 
corresponding character of key to produce an en-

9 The run finished when all wheels matched their start 
positions at the beginning of a cycle. Thus a long run could 
also be produced by setting two wheels to step fast and 
testing both for termination.
10 We explore this idea more in Thomas Haigh and Mark 
Priestley, “Colossus and Programmability,” IEEE Annals 
of the History of Computing 40, no. 4 (Oct-Dec 2018): 5–17.
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Read tape character Read code wheels

Test inputs in combining unit

Increment counters from cmb. unit output

Advance electronic code wheels

Sense
end msg. mark

on tape?

Print counters that meet threshold criteria

Step start posn. of any fast stepping wheel(s) 

Are start posns.
of selected fast stepping

wheels equal to
their initial 

values?

Step start posn. of slow stepping wheel (if set)End

Zero counters; Set wheels to start posns.

Wait for message start mark on tape

Outer Loop on
Slow Stepping Wheel

Middle Loop on
Fast Stepping Wheels

Inner Loop
Once Per Character Read

Yes

No

No

Yes

No

Yes

Start

Wait for tape to reach next sprocket hole

Set wheel start posns. 
to initial values

Are start posns.
of all selected wheels

equal to their
initial values?

Fig. 4: Flowchart representation of the program carried out by Colossus. This represents the behavior of the machine as a 
whole as a fixed series of operations and tests. The program was not represented or stored explicitly anywhere in Colossus. 

Note that setting wheels to step (fast, slow, or not at all) and specifying which wheels to test for loop termination were 
separate choices.
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crypted character. Decryption repeated this process: 
the original message was recovered by combining the 
encrypted message with the same key sequence.

2.1 Code wheels on the Lorenz machine

Each Lorenz cipher machine held twelve wheels. Two 
wheels acted via “logical addition” on each of the five 
channels of the message being encrypted. One set of 
five wheels, known by the codebeakers as the “chi 
wheels”, rotated together every time a character was 
processed. The other set, known by the codebreakers 
as the “psi wheels”, also rotated together but did not 
always move. Whether or not they moved depended 
on the action of the final two wheels, dubbed the mo-
tor wheels.

Heath Robinson could carry out a comparison 
between any two tapes. Initially, however, it was in-
tended to be used with “wheel tapes” that contained 
data derived from a partial simulation of the Lorenz 
machine. The wheel tapes used by the Robinsons 
were generated by machines that simulated these 
aspects of the Lorenz machines. The wheel patterns 
would be set up and tapes punched containing the 

bits contributed by specific wheels to the key. Per-
haps the most important difference between the 
Robinson and Colossus machines was that the latter 
included circuitry that performed this simulation in-
ternally.

Because the Robinsons read both input streams 
from tape they could handle a broader range of tasks 
than Colossus. One could punch any desired set of 
five bitstreams onto either tape loop, padding as nec-
essary to ensure that their lengths were relatively 
prime. The machine would then automatically try 
every combination of start positions for the second 
stream against the first.

Colossus traded generality for speed and efficiency 
of setup. As long as one of the input streams repre-
sented code wheels from a Lorenz cipher machine, 
a Colossus could tackle the job much faster than a 
Robinson. Eliminating the need to synchronize two 
paper tapes made it possible to read the remaining 
tape faster – at 5,000 characters per second rather 
than 2,000. With a Colossus, changes to simulated 
code wheel bit patterns could be made in an instant 
by adjusting controls. Using a Robinson any change 
to the input wheel pattern would require punching a 
new input tape. Even shifting the attack from one set 

1      0      0      1      1            XOR χ1      1      0      1      1          XOR ψ1          0      0      0
0      1      0      1      0            XOR χ2      0      0      1      0          XOR ψ2          1      0      1  
0      1      0      0      0            XOR χ3      1      1      0      1          XOR ψ3          0      1      0   
1      0      1      1      0            XOR χ4      1      0      1      0          XOR ψ4          0      0      0   
1      0      0      1      0            XOR χ5      1      0      0      0          XOR ψ5          1      0      1  

plain text
(5 bit channels)

5 chi wheels
always
rotate

5 psi wheels
sometimes

rotate

2 motor 
wheels drive

psi wheels

μ1 μ2

teleprinter
radio

transmitter

  0
11

01
  1

11
01

  0
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  0
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cipher text
(5 bit channels)

serialized
ciper text

Lorenz Encoding Attachment

1      1      0      0      1            XOR χ1      1      0      1      1          XOR ψ1          0      1      1
0      1      0      1      0            XOR χ2      1      0      0      0          XOR ψ2          1      0      1  
0      0      0      1      0            XOR χ3      1      1      0      1          XOR ψ3          1      1      1   
0      1      1      0      1            XOR χ4      1      0      1      0          XOR ψ4          0      0      0   
0      1      0      0      1            XOR χ5      1      0      0      1          XOR ψ5          0      0      1  

plain text μ1 μ2 cipher text

Lorenz Decoding Attachment

teleprinter
radio

receiver

Same wheel start positions and bit patterns
 used on encoding and decoding machines

Source

(paper
tape or

real time
keyboard

entry)

Printer

(Types out
message

as received)

Fig. 5: The schematic operation of the Lorenz cipher  machines that Colossus family machines were designed to tackle.
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of code wheels to another, which was necessary at 
least twice in determining the code wheel settings for 
each message, would require the loading (and quite 
possibly the punching) of a new tape.

If you want to read an encrypted Tunny message, 
you need to know the key. The key is generated by the 
interaction of the wheels on the Lorenz machine, so 
what you need to know is the machine settings used 
to encode the message. There are two aspects to this.

First are the bit patterns set on each of the Lorenz 
machine’s twelve code wheels. These were varied 
by moving pins. Early in the war they were changed 
infrequently, but by the end of the war they were 
changed daily. The same bit patterns were used for 
all messages sent over a particular radio link. Figur-
ing out the correct bit patterns was known as “wheel 
breaking.” For a long time, wheel breaking was car-
ried out by human codebreakers, though as experi-
ence was gained with the Colossus family machines, 
they were also applied to this task.

Second are the starting positions for each of the 
ten code wheels. These changed with each message 
sent. Finding the correct start positions was known 
as “wheel setting.”

Figure 6 shows the overall organization of Tunny-
breaking work at Bletchley Park. Colossus, like Heath 
Robinson, was initially applied to one of these tasks: 
setting the chi wheels. This diagram represents the 
typical situation in late-1944. By this point the Colos-
sus family machines were also used to break the chi 
wheels. Some psi and motor wheel setting was also 
done with Colossus, but as Colossus time was scarce 
most of it was still done by manual methods. This 
distinction between machine and manual methods 
was also an organizational one: the Colossus fam-
ily machines were the central concern of a section 
of Bletchley Park generally known as the Newmanry, 
while manual codebreaking and the decryption of 
messages was handled by a separate section: the Tes-
tery. Both were named after their leaders.

2.2 Colossus vs Heath Robinson for Wheel Setting

A Colossus family machine would need to make mul-
tiple runs to tackle any actual codebreaking job. So 
the overall throughput of the machines depended 
not just on the speed at which they could read the 
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1      0      0      1      1      0
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Fig. 6: The overall workflow involved in producing decrypted Tunny messages, as of late 1944. Although Colossus  
could be applied to several steps in the process, its core applications were in setting and breaking chi wheels.
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input tape, but also on how much work could be ac-
complished during each run and on how long the ma-
chine sat idle between runs.

The Colossus machines could complete the series 
of runs needed to set chi wheels for a message much 
more rapidly than Heath Robinson. There were five 
main reasons for this, exploration of which reveals 
the ways in which operator practices and technologi-
cal capabilities coevolved to boost productivity.

First, the Colossus machines could cycle through 
the message tape faster, reading it at up to 5,000 char-
acters per second rather than 2,000 for Heath Robin-
son. Eliminating the second tape also eliminated a 
common source of error: problems in synchronizing 
the two input tapes.

Second, later versions of Colossus could apply 
“multiple testing” techniques to evaluate up to five 
possible start positions for one of the chi wheels each 
time the message tape cycled through.11 Colossus pro-
vided five counters, into which runs of this kind could 
simultaneously accumulate counts for five wheel po-
sition combinations. The additional counters speeded 
some other kinds of run too, for example in a character 
counting run each counted for a different character.

Third, Colossus eliminated a great deal of work 
preparing input tapes. Bit patterns for the wheels and 
stepping of initial start positions (which would de-
pend on which wheels were being broken on a partic-
ular run) were set up with switches and plugs. Heath 
Robinson, in contrast, had relatively few configurable 
settings as the wheel inputs were read from tape. Ev-
ery time bit patterns on the wheels changed, opera-
tors would have to produce a set of tapes holding the 
full sequences for different wheel combinations – for 
example a tape 1,271 characters long with the full 
cycle for chi-wheels 1 and 2. Newman’s description 
of procedure suggests that the same tapes could be 
used for long runs and short runs. For example, the 
short run to set wheel 4 would use the 1066-character 
tape prepared to give the full sequence for chi wheels 
1 and 4. However this would only work if the length 
of the message tape was a multiple of 41, the length 
of wheel 1, so that every run aligned the start of the 
message with the correct (known) start position for 
wheel 1 but with a different start value for wheel 4. 
This technique implies a need to duplicate several 
versions of each message, padded to the lengths 

11 On the 1+2 run this provided a speedup of only 4.55 
rather than five times. The wheel lengths were 41 and 31. 
Applying the array unit to wheel 1 would evaluate the first 
40 start positions in eight revolutions of the tape, but on the 
ninth would evaluate only one new start position (and du-
plicate results for the first four). The Colossus would com-
plete the run after 279 revolutions of the tape, rather than 
the usual 1271. During this time it evaluated 1395 wheel 
combinations, of which 124 were duplicates. So the maxi-
mum possible speedup on this run would be a factor of 4.55.

needed for different runs, or a need for Heath Robin-
son operators to be cutting and splicing messages be-
tween runs to adjust their length. According to a con-
temporary report, “In sticking the tapes into loops 
for Robinson, great care has to be taken to get their 
length precisely right. So many errors were made at 
this that an appreciable amount of time was lost. Also 
tapes had to be recopied frequently because a differ-
ent length was needed for a new run.”12

Fourth, Colossus added a great deal of logical 
flexibility to the combining unit, which combined 
with the on-the-fly generation of simulated ring se-
quences allowed for more complex logical compari-
sons between inputs. Heath Robinson had been de-
signed with simple runs in mind. The basic technique 
used in runs such as “1+2” involved a cascade of eight 

“phase shifters,” the circuit that XORed a signal with 
the result of previous operations.

The Colossus machines used a similar sequence of 
comparisons for the initial run. However, subsequent 
runs were able to incorporate inputs from more than 
two channels from the simulated wheels, which 
yielded extra information and so boosted chances 
that a clearly significant result would be achieved 
when the message tape was cycled against the correct 
setting for the unknown wheel(s). For example, the 

“4=5/1=2” Colossus run incorporated signals from the 
known positions for wheels 1 and 2. These were con-
figured not to step their start positions, so that the 
correct start positions would be used every time the 
tape cycled. Such a test would have been infeasible 
with Heath Robinson, as it would require a wheel 
tape of 760,058 characters in length (1271 x 26 x 23) 
and a message tape that was a multiple of 1271 char-
acters in length so that it stayed aligned with the cor-
rect settings for wheels 1 and 2.

Colossus also added more kinds of logic gate to its 
plug board. Heath Robinson’s XORs were sufficient 
for runs such as 1+2. A run such as “4=5=/1=2” re-
quired other logical operations to test whether four 
bits were all the same. Carrying out “3+4x/1x2x” de-
manded a logical AND over three inputs (i. e. two bi-
nary AND gates).

Fifth, the Colossus combining unit was designed 
to speed the setup of common tests. The Colossus ma-
chines eliminated the need to wire XOR gates to gen-
erate deltas on input channels by providing switches 
that could be flipped to switch input channels be-
tween actual bit values and deltas.13 Other switch 
panels let operators set up the comparisons for most 
runs quickly, without the need to move wires.

12 National Archives and Records Administration (USA): 
NARA-HCC b579. Report on British Attack on Fish, p. 47.
13 Surviving evidence is incomplete and contradictory 
over exactly how the first Colossus handled the genera-
tion of deltas, which operations its plugboard provided, 
and whether it provided any switches.
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3 Colossus Controls

3.1 Physical Layout Overview

Despite its name Colossus was fairly compact com-
pared to some other machines designed during the 
war, such as Bell Laboratories’ gigantic codebreaking 
machine Madame  X, or the University of Pennsyl-
vania’s ENIAC. Electronic components and switches 
were spread across eight racks, arranged in two rows. 
The tape reader relied on an elaborate system of pul-
leys to handle tapes of different length read at high 
speed. These were mounted in a large frame known 
as a “bedstead.”

14 Anthony E Sale, “The Rebuilding of Colossus at Bletch-
ley Park,” IEEE Annals of the History of Computing 27, no. 3 
(July-September 2005):61–69, page 66.
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No controls (more 
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Fig. 8: Physical layout of Colossus. The physical layout diagram focuses on the controls spread over the various racks. The 
basic three-part architecture introduced with Heath Robinson can still be discerned in the physical layout of Colossus. 

Essentially the reader unit, now including electronic generation of the code wheel signals, was on the back row (racks W, M 
and R) plus the duplicate tapes and readers next to the “bedstead.” Racks S, K and most of Rack J formed the combining 

unit. The counters, on Rack C, controlled the typewriter.After Tony Sale.14

Fig. 7: This photograph of an original Colossus shows, from 
left to right, Rack C, Rack S, the typewriter (foreground), 

Rack K (with the wheel breaking panel sloping out from it), 
Rack J, and the “bedstead” tape system. National Archives 

FO 850/234 (“Annotated photographs of the COLOSSUS 
Electronic Digital Computer”).
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Figure 9 gives an idea of how the simple structure 
used for Heath Robinson grew more complex with 
the later Colossus machines. It takes some liberty 
with the actual positioning of controls, as the three 
units were no longer so neatly separated. For exam-
ple, the master control switches are shown here as 
part of the reader because all control functions were 
driven by sensors in the tape reader. Likewise, the 

switches to control the electronic buffer are shown 
as part of the reader unit because they control the 
signals being generated. In fact, both the master con-
trol switch and the buffer controls were on the same 
control panel (part of Rack S). In the discussion that 
follows we group controls according to this logical 
separation, but note for each the rack on which they 
are physically located.

Electronic typewriter
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Fig. 9: Logical architecture of Colossus 2, focusing on controls and control mechanisms.
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3.2 Reading and Generating Controls

3.2.1 Reading the tape
Each Colossus had two bedsteads, allowing one 
tape to be mounted while another was being read. A 
group of five switches (usually ganged together) on 
the selection panel on rack J allowed the operators 
to choose which bedstead (“near” or “far”) the input 
came from (see Figure 10).

3.2.2 Span Counters
Spanning allowed operators to analyse only part of 
the message tape. This was controlled by the span 
counters” on rack J, shown in Figure 11. These are 
twelve 10-place switches, arranged in three groups 
each specifying a four-digit number. The two groups 

“Start counter” and “End of span” define the interval 
where the counts are recorded. Outside that interval, 
Colossus would supress signals to the counters. The 
final set of switches, labelled “Psi Start,” controlled 
the point from which the psi wheels were motorized. 
These were normally set to 0000.

Initially the Colossi were built to handle a maxi-
mum tape length of 10,000 characters, so four-digit 
span controls were adequate. Some later machines 
had “long bedsteads” that could handle tapes up to 
30,000 characters long. To enable spanning on these 
tapes, some “span control” switches were provided 
on the rack J selection panel, as shown in Figure 12, to 
provide a “rudimentary 5th decade.” The three left-
hand switches correspond to the “start counter,” “end 
of span,” and “psi start” switches, and added 10,000 
or 20,000 to the total set on the regular span switches 
when thrown up or down.

3.2.3 Defining and Selecting Wheel Patterns (Triggers)
For reasons said to be rooted in a misunderstanding 
of electronics terminology, the controls used to set bit 
patterns for the simulated code wheels were known 
as “triggers.” Most Colossus controls were placed on 
the front side of the front row of racks, but triggers 
were mostly placed on rack R on the rear row of racks, 
along with the power supplies and the electronics for 
the code rings.

Each trigger consisted of a series of sockets. Plac-
ing a U-shaped pin in a particular socket caused the 
simulated code wheel to output a 1 on its bitstream 

Fig. 10: Bedstead selector switch (TNMOC reconstruction). 
Photograph: Mark Priestley.

Fig. 11: Span counters (TNMOC reconstruction). Photograph: Mark Priestley.

Fig. 12: Span control switches (TNMOC reconstruction). 
Photograph: Mark Priestley.

Fig. 13: One of the 
“triggers.” (TNMOC 

reconstruction). 
Photograph:  

Mark Priestley.
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when the appropriate wheel position was reached. 
Otherwise the wheel output a 0. The photograph in 
Figure 13 is from the rebuilt Colossus.

Colossus provided several triggers for each code 
wheel. There were five triggers (named a, b, c, d, e) 
for each of the chi and psi wheels, and seven (a, b, c, d, 
e, f, g) for the μ wheels. The trigger selection switches 
on the selection panel (rack J) determined which 
trigger would define the patterns for each simulated 
wheel in a particular run (see Figure 14).15

Different code wheel patterns were used on different 
German radio links, so being able to store multiple 
patterns and switch between them would save setup 
time when switching between messages intercepted 
on different links. As bit patterns used on a particu-
lar link were changed, with increasing frequency as 
the war went on, the ability to store several patterns 
would also save time when switching between mes-
sages intercepted on different days.

15 The reconstructed Colossus does not have a full set of 
trigger controls, and the ones that are present are labelled 
differently from those on the original machines.

Additional switch positions e’ and g’ allowed the e 
trigger for the chi and psi code wheels and the g trig-
ger for the motor wheels to be used in a special way, 
as “special” or “doubting” patterns, to be used in ad-
dition to an ordinary trigger. If these positions are se-
lected, the impulses from the affected wheel were not 
used in the normal way (appearing on the Q panel, or 
motorizing), but appeared instead on the plug board.

The Colossus machines were eventually applied to 
wheel breaking as well as wheel setting, a task which 
required the operator to make frequent changes to 
bit patterns in search of a solution. Moving between 
the main triggers, on the rear of rack R, and the other 
controls would slow things down, which is why the 

“Wheel breaking panel” added to rack K, close to the 
other controls, included two additional trigger sets. 
These used different, easier to handle pins and were 
much more conveniently located. According to the 
General Report on Tunny (GRT 52(h), 314),16 “Intol-
erable delays and mistakes during wheel-breaking 
were caused by the need for setting up pins at the 
back of Colossus and complaints finally extorted the 
wheel breaking panel on the front of some machines.”

3.2.4 Setting the Wheel Start Positions
Once the wheel patterns were defined, the starting 
positions for the 12 simulated code wheels had to be 
set. This was done by putting plugs in the setting jacks 
on rack S, just below the control panel (see Figure 15). 
There are 12 jack strips, one for each simulated wheel.

16 We will be repeatedly citing the 1945 “General Report 
on Tunny” produced by members of the Bletchley Park staff 
(probably D. Michie, I. J. Good, and G. Timms) shortly af-
ter the end of the war. It was declassified decades later, in 
2000, and released as TNA: HW 25/4 and HW 25/5. A scan 
of the original is available online at http://www.alantur-
ing.net/turing_archive/archive/index/tunnyreportin-
dex.html. The report has recently been published in an 
annotated version as James A. Reeds, Whitfield Diffie, and 
J V Field, Breaking Teleprinter Ciphers at Bletchley Park. An 
Edition of General Report on Tunny With Emphasis on Sta-
tistical Methods (1945) (Piscataway, NJ: IEEE Press/Wiley, 
2015). Our citations to “GRT” provide the both the section 
number, usable with the original report, and a page num-
ber for the Reeds et al. reprint.

Fig. 14: Trigger selection switches (TNMOC reconstruction). 
Photograph: Mark Priestley

Fig. 15: Setting jacks (TNMOC reconstruction).  
Photograph: Mark Priestley.
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3.2.5 Controlling Wheel Stepping
Every time the message on the tape finished, Colos-
sus rest the position of each code wheel to a stored 
value known as its start position, or “setting”. These 
values were held on electro-mechanical uniselectors. 
Most runs involved reading the message repeatedly 
to try out different combinations of wheel start po-
sitions. So Colossus could advance wheel start po-
sitions before reading the message again. This was 
known as “stepping” a wheel.

Many runs involved testing the tape against all the 
possible combinations of starting positions of two 
wheels. These were called “long runs.” A wheel that 
stepped forward by one position each time the tape 
rotated was said to “step fast.” In a long run, it was 
common for one wheel to step fast and the other 
slow, i. e. to step only when the fast wheel had come 
back to its original setting. These runs were set up 
on the blue switches visible in Figure 16: the image 
shows the first wheel is stepping slowly (switch up) 
and the second fast (switch down). The run would 
terminate when all the wheels returned to their orig-
inal position, when a “repeat light” would be illumi-
nated (it is unclear whether the operator then had to 
stop the machine manually, or whether it automati-
cally cut out).

A short run only involved testing the positions of 
one wheel, and in this case the wheel would be set 
to step fast. Colossus was capable of running several 
short runs simultaneously, printing the results for 
up to five wheels. If more than one wheel was set to 
step fast on the blue switches, the run would finish 
only when all combinations had been tested. For si-
multaneously short runs, however, it is not necessary 
and would be wasteful of time to examine all possible 
wheel positions. The run can be stopped when the 
longest wheel reaches its starting position, as by then 
the shorter wheels will also have been stepped to all 
possible positions. In this case, the grey switch for 
the longest wheel would be set down, and the other 
wheels to be tested up. All those wheels will then 
step fast, and the repeat lamp will be illuminated 
when the longest wheel (with its grey switch down) 
reaches its starting position. (A single short run could 

be set up by putting either the blue or the grey switch 
for the wheel down.)

3.2.6 Multiple Testing
Multiple testing allowed Colossus to perform tests 
on five successive output bits from one of the simu-
lated code wheels. As discussed previously, this was 
accomplished using a buffer switched to the ap-
propriate code wheel (on later versions of Colossus 
any of the chi or psi wheels or one of the two motor 
wheels).17 This had the effect of evaluating five com-
binations of wheel start settings simultaneously, with 
the result that the start position of the code wheel 
being buffered could be stepped by five positions, 
rather than one position as usual, each time Colos-
sus reached the end of the message on its input tape.

The red switches interspersed between the setting 
switches (see Figure 16) controlled multiple testing. 
The wheel set for “multiple testing” could step fast or 
slow, but when it did step, it stepped by five positions 
rather than one.

3.3 Combining and Testing Controls

3.3.1 Mixing the Input Streams
As each bit position of the tape was read, the follow-
ing inputs were available for testing:

 – The five bits read from the five-channel input tape. 
This was called the Z stream.

 – The five bits generated by the simulated chi 
wheels. This was called the χ stream.

 – The five bits generated by the simulated psi 
wheels. This was called the ψ stream.

 – If multiple testing was being used, the five remem-
bered bits from the last five positions of the wheel 
on multiple test.

Before any tests were carried out, the Z, χ, and ψ 
streams were combined to form a single five-chan-
nel stream known as the Q stream. In principle, 
each of the five channels of the Q stream could be 
formed from a different combination of inputs. For 
each channel, the bit appearing in the Q stream was 
formed by combining up to three bits. For example, 
for the channel 1 of the Q stream the three sets of 
choices were as follows.

 – Channel 1 from Z stream, deltas from channel 1 of 
the Z stream, or nothing.

17 “Multiple testing is provided for all wheels except μ61, 
χ5, ψ5 were added later and have not been fitted to all Co-
lossi. μ37 has its own switch: the others are in pairs, each 
pair sharing a three-way switch, viz. χ1, χ2, χ3, χ4; ψ1, ψ2, 
ψ3, ψ4, χ5, ψ5.” (GRT 53L(g), 329).

Fig. 16: Stepping was controlled by the stepping switches  
to the left of the control panel (the grey and blue  
switches in this picture). (TNMOC reconstruction).  

Photograph: Mark Priestley.
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 – Channel 1 from χ stream (representing the first chi 
wheel), deltas from channel 1 of the χ stream, or 
nothing.

 – Channel 1 from ψ stream (representing the first psi 
wheel), deltas from channel 1 of the ψ stream, or 
nothing.

These choices were made using the Q selection 
switches shown in Figure 17. These formed part of 
the selection panel on the J rack. Each switch could 
be toggled up to include the bit from the correspond-
ing stream, or down to include the delta. Leaving a 
switch in the central neutral position meant that the 
input from that stream was ignored.

In practice, the switches for channels 1 to 5 were usu-
ally moved together, something made easier by a 
crossbar shown here fitted to the five Z stream con-
trols to set all of them to the delta Z position. In cases 
like this, the settings could be described by a simple 
equation. The illustration above shows that each 
channel of the Q stream is formed by combining the 
deltas of the corresponding channels of the Z and χ 
streams. This can be described by the equation

Q = ∆Z + ∆χ .

The selected bits were combined with XOR opera-
tions, often referred to at the time as “addition mod-
ulo 2” (hence the + sign in the equation).

We think of this process as akin to the mixing to-
gether of different channels accomplished on an au-
dio control board, in a recording studio or live per-

formance, though of course the combination of input 
streams here took place digitally. This “mixing” took 
place in two stages. First, the Q stream was formed 
as described above, and then the bits derived from 
multiple testing were handled. Multiple testing was 
supported by a five-bit buffer that held the current 
and four previous bits generated by a wheel. These 
bits were not simply added to the Q stream, however; 
instead, they were combined with the other bits com-
ing into the “mixer” in the way defined by the Q selec-
tion switches, giving rise to five new bits R1, R2, R3, 
R4, and R5. Thus if Q = ∆Z + ∆χ, as above, and χ1 was 
being multiply tested,

R1 = ∆Z1 (present) + ∆χ1 (present)
R2 = ∆Z1 (present) + ∆χ1 (1 back)
R3 = ∆Z1 (present) + ∆χ1 (2 back)
R4 = ∆Z1 (present) + ∆χ1 (3 back)
R5 = ∆Z1 (present) + ∆χ1 (4 back)18

In other words, R1 is the same as Q1, R2 is the same as 
the Q1 that would have been generated at the previ-
ous tape position if multiple testing had not been in 
use, and so on.

3.3.2 Plug Panel
The later Colossi had two functional units which al-
lowed the properties of the Q and R bitstreams to be 
tested and counted. The first was the jackfield, or 
plug panel, positioned on rack J (see Figure 18). This 
allowed great flexibility in the tests that could be set 
up, but also required them to be set up from scratch. 
As experience was gained, it appeared that much of 
the work the Colossi involved the repeated applica-

18 GRT 53L(c), 328.

Fig. 17: Q selection switches (TNMOC reconstruction). 
Photograph: Mark Priestley.

Fig. 18: Plug panel, sometimes called the “jack field” 
(TNMOC reconstruction). Photograph: Mark Priestley.
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tion of a quite small set of tests. From Colossus 2 on-
wards, the machines were fitted with a special panel 
that allowed tests of these types to be set up quickly 
by flipping switches rather than by plugging wires 
(this panel is described in the next section). The Gen-
eral Report on Tunny described some example uses of 
the plug board, including a particular wheel breaking 
run “normally done by plugging” (GRT 53K, 326–8).

The plug panel is divided into three broad areas.
1. The top five rows represent the input, i. e. the bit-

streams coming from the reading and generating 
parts of Colossus;

2. the middle six rows (two groups of three) allow 
bits to be combined;

3. and the final two rows send output bitstreams to 
the counters.

The first five rows of the plug panel largely contained 
the outputs from various bitstreams. These included 
the Q and R streams available on the Q panel, the in-
dividual input channels of the message tape, and all 
wheels (these weren’t available on the Q panel) and 
various special patterns.

The “common” areas in rows 2–5 (six groups of 
five plugs) allowed bitstreams to be duplicated. The 
Q1 bitstream, for example, was available at the two 
plugs at the top left of the panel. If for a complex test 
this bitstream had to be used more than twice, one 
of these plugs could be wired to a common plug, and 
the bitstream would then be available at the other 
four plugs in the same field.

The next six rows included the “addition field” (la-
belled “SWITCHES” in the reconstructed machine 
shown in the photograph; 28 columns of three plugs), 
which provided the basic modulo 2 addition (XOR) 
operation. Multiple tests could be set up simulta-
neously here. Inputs were plugged into the top two 
rows, and the results taken from the bottom row. It 
was possible to sum more than two bitstreams in one 
operation.

Towards the right of rows 9–11 are the “start units” 
that allowed “constant” dots or crosses to be added 
into a test. These could be used to construct other 
logical combinations. The General Report on Tunny 
describes a combined use of the start and addition 
fields: “To plug any impulse [bit] to equal a cross, add 
a cross and plug normally [on the addition field]” 
(GRT 53K(i), 327). Adding a cross to a bit produces 
its opposite. In effect, this allows the Boolean NOT 
operator to be plugged.

The bottom two rows (and the “all counters” jacks 
on rows 9–11) allowed the results of the tests to be 
sent to the counters. More than one test could be sent 
to the same counter, providing a basic Boolean OR 
combination.

3.3.3 Q Panel
Flipping switches on the Q panel, found on rack K, 
accomplished most of what had been done by rout-
ing wires on the combining unit of the first Colossus: 
select inputs of interest, apply logical operations to 
them, and route the results to particular counters.19 
Setting switches was quicker than plugging wires, 
and because the switch panel was designed with 
common Colossus practices in mind one switch flip 
often substituted for several wire placements. The 
historic photograph in Figure 19 shows the scale of 
the Q panel, while the schematic in Figure 20 shows 
the layout of its switches. Conditions on specific 
channels are set on rows of switches like the one 
shown in Figure 21.

The five black switches on the left correspond to 
the five input channels of the Q stream emerging 
from the mixer. Each can be switched up for false (a 
dot) or down for true (a cross). If the switch is set to 

19 Evidence here is contradictory. Horwood did not men-
tion any switching mechanism for the first Colossus, but 
the General Report on Tunny reported that “runs of the 
form i + j = • [i. e. chi wheel setting runs] could be done 
by switching except in the fifth counter. Most other runs 
required plugging, though there was a single set of five dot 
and cross switches for ‘all counters.’” (GRT 52(e), 313). If 
this is true then the first Colossus had, or later acquired, a 
switch panel of some more limited kind.

Fig. 19: The Q panel, partially obscured by the head of 
operator Dorothy Du Boisson, was by far the largest  

control panel on Colossus. National Archives FO 850/234 
(“Annotated photographs of the COLOSSUS Electronic 

Digital Computer”).
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the middle, neutral, position the corresponding im-
pulse is simply ignored. This example20

is therefore equivalent to the Boolean condition:

(Q₁=×)∧(Q₂=∙)∧(Q₃=×) .

This could be represented more compactly using 
modern conventions. In the abstract language of 
bitstreams, which we use elsewhere in this report, 0 
represents a dot (or a logical FALSE) and 1 represents 

20 This example is taken from (GRT 53J(f), 325). The au-
thors used a schematic representation of the Q panel, in 
which arrows pointing up or down were used to indicate 
the switches that had been set. Switches left in the center 
position were represented as dots.

a cross (or a logical TRUE). If one also adopts those 
conventions then this is equivalent to

Q₁∧¬Q₂∧Q₃ .

However, we are sticking with the longer representa-
tion in this section as it more clearly corresponds to 
the labelling of the Colossus control panels.

The five switches on the right of the row corre-
spond to the five counters. When the condition set 
on the row is met the selected counter (or counters) 
increment. Thus the example above would form a 
count of the positions in the input bitstream satisfy-
ing 1x2•3x to be made in counter 1.

The yellow switch to the left of the counter negates 
the test set on the Q and R switches. This enables con-
ditions of the form “X or Y” to be set up in the equiva-
lent form “not (not X and not Y).” For example, the 
test

(Q₁=•)∨(Q₂=×)

was diagrammed as follows (GRT 53J(d), 323):

These switch settings encode the equivalent Boolean 
formula

¬�(Q₁=×)∧(Q₂=•)�

and the matching inputs are counted in counter 1.
If more than one row sends its results to the same 

counter, the counter is only incremented if both con-
ditions are true. Another logical function was pro-
vided by row 11 of the Q panel (see Figure 22).

There are five switches, one for each counter. De-
pressing a switch reverses the effect of the tests ap-
plying to that counter, and so provides a way of ne-
gating a whole expression.

These facilities could be combined to test quite 
complex conditions. For example, one way to set the 
condition 1=2=4 is to express it as:

�(Q₁=×)∧(Q₂=×)∧(Q₄=×)�∨�(Q₁=•)∧(Q₂=•)∧(Q₄=•)�

Fig. 20: A schematic depiction of the Q panel. Switch 
colors are taken from the TNMOC rebuild, though 

some labels present on the original machines have 
been added. The row numbers in parenthesis on the 

left are not present on the rebuild or the original 
machines but are added here and in the later setup 

diagrams for comprehensibility.
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Fig. 21: The top row of the Q panel (TNMOC reconstruction). 
Photograph: Mark Priestley.

Fig. 22: The switches on the 11th row of the Q panel 
(TNMOC reconstruction). Photograph: Mark Priestley.
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and then transform it to the equivalent:

¬�¬�(Q₁=×)∧(Q₂=×)∧(Q₄=×)�∧¬�(Q₁=•)∧(Q₂=•)∧(Q₄=•)�� .

This can be switched and counted in counter 2 as fol-
lows (GRT 53J(f), 325).

At the left of the first row, three switches test for 
(Q₁=×)∧(Q₂=×)∧(Q₄=×); at the right of the row 
this test is negated and sent to counter 2. Similarly, the 
second row sets up a test for (Q₁=•)∧(Q₂=•)∧(Q₄=•), 
negates it and sends it to counter 2. At this point, 
counter two is set up with the test

¬�(Q₁=×)∧(Q₂=×)∧(Q₄=×)�∧¬�(Q₁=•)∧(Q₂=•)∧(Q₄=•)� .

The switch set on the final row negates this whole 
condition.

The rows 12–16 of the Q panel allowed selected im-
pulses to be XORed, or “added modulo 2”, together. 
Figure 23 shows the last such row (row 16, contain-
ing mostly red switches), just above row 17 at the 
very bottom of the Q panel containing more “not” 
switches (yellow).

Flipping down one of the five red switches on the left 
added the value of the corresponding channel into 
the sum. The yellow switch to the left of the counter 
selection switches let the operator choose whether 
the sum was tested equal to a dot or a cross. The 
basic 1+2/ run (this notation is explained below) 
meant (Q₁+Q₂=•), and could therefore be set up 
on one of these rows by depressing the Q₁ and Q₂ 
switches, and setting the yellow switch to the left of 
the counter switches to •.

A more complex use of multiple rows provides an 
alternative way of testing whether three input bits 
are equal (GRT 53J(f), 325).

These two rows encode the condition

(Q₁+Q₂=•)∧(Q₁+Q₅=•) .

As two bits are equal if and only if they XOR to dot, 
this is equivalent to

(Q₁=Q₂)∧(Q₁=Q₅) .

Each of the 15 test rows on the Q panel included a 
switch for each channel in the Q stream. When a 
multiple testing run was taking place, the input to 
the Q panel included five bits from the wheel being 
multiply tested. These could be included in tests us-
ing the R switches, which behaved in the same way as 
the Q switches. An example of switching using the R 
switches can be found in section 4.3 below.

The five yellow switches to the right of row 17, la-
belled ≠, negated conditions, just like the similarly 
labelled switches in row 11. However, the switches in 
row 17 “negate whole columns, not merely the lower 
part of the panel; in particular they negate the upper 
row of ‘not’ switches” (GRT 53J(e), 324).

3.4 Counting Controls and Output

3.4.1 The Display
Rack S included a small panel of display lights (see 
Figure 24):

The five upper rows, labelled a, b, c, d, e, give the cur-
rent contents of the five counters. The use of letters 
a–e matched the identifiers used on Colossus print-
outs, though elsewhere the counters were referred 
to with numbers. One light was illuminated in each 
block, corresponding to the units, tens, hundreds and 

Fig. 23: The bottom two rows of the Q panel (TNMOC 
reconstruction). Photograph: Mark Priestley.

Fig. 24: Display lights on Rack S (TNMOC reconstruction). 
Photograph: Mark Priestley.
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thousands digit of the decimal representation of the 
counter contents. In Figure 24, the contents of coun-
ter e, for example, is 2,198.

The twelve lower rows show the current positions 
of the simulated wheels. (K was often used as a type-
able or more easily written alternative to χ, S for ψ, 
and M for μ). In each row, one of the rightmost ten 
lights is illuminated to give a decimal units value. The 
remaining lights, on the left, give the decimal tens 
value. Because the wheels were of different lengths 
the number of lights varies by row. For example, the 
fifth chi wheel was only 23 bits long, and so needed 
only three lights to represent the tens digit (0, 1 or 2). 
The longest wheel, the first motor wheel, was 61 bits 
long and so needed seven positions (the tens digit 
could be 0, 1, 2, 3, 4, 5, or 6). Thus in the example 
the first row (“K1”) shows 18, the second row (“K2”) 
shows 02, and the other rows all show 01 – indicating 
that these wheels had a start position of 1 and had not 
been stepped.

3.4.2 Threshold and Printer Controls
The basic function of the printer was to print the val-
ues stored in the counter after each rotation of the 
tape. This functionality could be configured in two 
ways, first by the “set totals” switches, and second by 
a small jackfield that controlled which counters were 
printed.

The set totals switches are found on rack C (see 
Figure 25). The switches change nothing in how or 
what the counters count, which is a function of the 
inputs being fed into each counter from the plug 
board and Q panel. What these switches do is to au-
tomatically suppress the printing of counts obtained 
with particular wheel settings if those counts fall well 
within the range that would be expected from ran-
dom variation.

The large, rotary switches specify a five-digit 
decimal number. The smaller switches specify, for 
each counter, whether the threshold specified is a 
minimum value (below which the printing of counts 
should be suppressed) or a maximum value (above 
which the printing of counts should be suppressed). 
These automated much of the work of the human 
operators of Heath Robinson, who were expected to 
scan the counters and write down counts and wheel 
start positions that exceeded a certain level. Opera-
tors would need to look up the appropriate thresh-
olds for a particular run, which would be determined 
according to the length of the message tape being 
analyzed and the proportion of positive results that 
would be expected by chance.

A small 5 x 12 jackfield, visible to the top-right of the 
setting jacks in Figure 15 above, further controlled the 
printed output. When multiple tests were being car-
ried out simultaneously, there is a mapping between 
wheels and counters: for example, the counts for 

different positions of K1 might be recorded in coun-
ter A, and those for K3 in counter B. When a count is 
printed, we only want to see the setting for the wheel 
associated with that counter. Inserting a plug in the 
relevant position in the jackfield (5 x 12 = 5 counters 
x 12 wheels) included the setting in printing output.

3.5 General Run Control

A small set of control switches on rack S controlled 
a somewhat miscellaneous selection of operations. 
These are the rightmost switches visible in Figure 16 
above. The arrangement and labelling of switches 
differs between the rebuild and the historic pho-
tographs of Colossus, and also varied between the 
original Colossus machines themselves. The report 
describes the switches as follows:

 – PMH – Print Main Headings. Causes the printer to 
output two rows listing the settings of each wheel, 
as shown in the top two rows of Figure 34 below.

 – SET – Set wheels. Resets the wheels to their initial 
positions, as defined by the setting jacks.

 – RESET – Reset counters. “Clears all scores in stor-
age: in particular if PCO is in use it allows stepping 
to be resumed” (GRT 53G(j), 322).

 – MAS – Master switch. “Unless this switch is thrown, 
Colossus can neither count nor step. It is however 
possible to set wheels and to reset counters” (GRT 
53N, 334). Note that when LC (see below) is set, 
however, it is possible to count.

 – REC – Rectangle. Two active positions: “print 
scores” and “normal” (GRT 53M(f), 333).

 – PCO – Printer cut-out. “Prevents Colossus from 
sending impulses to the printer, so that stepping 
ceases” (GRT 53G(i), 322).

 – L c/o – Lamp cut-out. “Cuts out the ‘settings’ 
lamps” on the display (GRT 53G(d), 321).

 – LC – Letter Count. “Is for making counts at fixed 
settings. It stops the machine after printing a batch 
of scores” (GRT 53G(h), 322).

Fig. 25: Threshold controls set the criteria used to selec-
tively suppress printing of totals (TNOC reconstruction). 

Photograph: Mark Priestley.
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 – KL – Cancel Lights. “Extinguishes the ‘settings’ 
lamps [on the display] when all scores in storage 
have been printed” (GRT 53G(d), 321).

Some of these switches were used to control the start-
ing and ending of runs. Once a message tape had 
been loaded and the tape reader started, the tape 
would keep revolving and the switches determined 
when the recording of counts would begin.

4 Typical Colossus Configurations

The Colossi were principally used to make counts of 
certain properties of encrypted messages, thus pro-
viding the raw data used for the Newmanry’s “sta-
tistical” attack on Tunny (as opposed to the Testery’s 

“linguistic” methods).

4.1 The Colossus Run Notation

The unit of Colossus work was the “run,” defined as 
an operation “which, when started, the machine can 
complete without human operation” (GRT 71, 420). 
Runs were set up by switching and plugging the con-
trols described in the previous section into particular 
configurations. A full taxonomy of Colossus runs will 
be given in a later report. Here, we describe how Co-
lossus was configured for some typical runs in order 
to give a sense of the range of its capabilities and the 
extent to which it could be “programmed.”

The notation used to define different runs followed 
the following syntax (slightly simplified):

 – Simple terms n ::= 1 | 2 | 3 | 4 | 5 denote the 5 chan-
nels in the input stream.

 – Sums s ::= n + n | s +n denotes the modulo-2 addi-
tion of bits from the corresponding channels.

 – Terms t ::= n | (s). Parentheses round sums are 
sometimes omitted.

 – Atomic conditions a ::= t | t∙ | tx. t and t∙ are true if 
t is dot, tx is true if t is cross

 – Equality conditions e ::= t = t | e = t are true if the 
terms are all equal, i. e. dot or all cross.

 – Conditions c ::= a | e | ca | ce are non-empty se-
quences of atomic and equality conditions, denot-
ing their conjunction.

Colossus runs were usually specified by a condition 
containing at most one slash symbol /. This was ex-
plained by US liaison officer Albert Small as follows: 

“The slants have been placed in to show what ‘runs’ 
are usually made on Colossus. Thus 4=5/=1=2 means 
that given 1 and 2, this is a good way to find 4 and 5 
simultaneously. But 4=/5=1=2 and 5=/4=1=2 are just 
as plausible to run under proper circumstances.”21

21 Albert W. Small, “Special Fish Report” (1 December 
1944). NARA-HCC b579, p. 7.

The numbers to the left of the slash are the chan-
nels whose starting positions the run is attempting to 
find, those to the right are those assumed known. A 
channel is “known” if the starting position of the cor-
responding wheel is assumed to be known; these po-
sitions are recorded on the setting jack panel before 
the run starts. A short run has one channel number 
to the left of the slash, a long run has two. Runs men-
tioned by Small include:

(1p2)∙/ 4=5/=1=2 4x5x/1x2x (4p5)∙/1x2x (3p4)x/1x2x
(4p5)∙/(1p2) (3p4)x/2x (2p5)∙/ (4p5)∙/ (3p4)x/(1p2)∙
5∙/2∙(1p4)∙ (3p4)x/ 5=/1=2 4∙5∙/1∙2∙ (3p/1)∙2∙
5∙/1∙2∙ (2p4)∙/ 3x/1x2∙ 4=/1=2 (3p/1p2)∙
4x/1x2x (1p3)∙/ 5x/1x2x 3x/1x2x (4p5)∙/1∙2∙
4∙/1∙2∙ (1p5)∙/ 3=/1=2 (1p4)∙/ (3p4)x/1∙2∙
3x/1x2x 3x/1x4∙ (3p/2)x1x4x 3∙/1∙2∙5∙ 3∙/1∙2∙4∙5∙

Removing the slash from a run specification yields 
the condition that should be set up for that run.

4.2 Configuration for the 1+2/. Run

This was the basic run used to set the χ1 and χ2 
wheels for a message where the chi wheel patterns 
were already known. Derived from Tutte’s original 
insight, it was the task that the original Heath Rob-
inson machine was built to carry out. It is a typical 
example of what was called a “long run,” one which 
made counts for all possible settings of two wheels. 
In practice, on Colossus 2 and later machines, this 
run would always have been carried out using mul-
tiple testing. In the hope of making things clearer, we 
first describe how this run would be set up without 
multiple testing.

As the length of the χ1 and χ2 wheels was 41 and 
31, respectively, the message tape would be cycled 
41 x 31 = 1271 times, with the χ1 and χ2 wheels set to a 
different combination of starting positions on each 
cycle. On each cycle, the first two bit channels in 
the message were combined with the correspond-
ing bits of the χ1 and χ2 wheels, and the count in-
cremented for every character position in which the 
resulting bit was 0 (“dot”). The operator would de-
termine the value at which a count gave statistically 
significant information, and configure Colossus to 
print the wheel settings and the count at those val-
ues only.

The Colossus controls were set up as shown in 
Table 1, which uses a format similar to that found in 
(GRT 24B, 116).

As we mentioned earlier, any combination of Co-
lossus settings for combining inputs and counting 
them could be represented as a truth table with del-
tas and current values from the tapes and wheels as 
the only inputs (because the combining hardware 
had no access to state information retained from one 
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bit position to the next). In this case, the table would 
be as shown in Table 2.

Note that the counter here is switched to tally dots. 
Using the convention that a dot is 0, this means the 
output to the counter is effectively NOT (∆χ1 XOR ∆χ2 
XOR ∆Z1 XOR ∆Z2). We will not show the tables for 
the other sample configurations as they are substan-

22 We should clarify that these are the inputs to the con-
ceptual “combining unit” of Colossus, not to the actual 
Q panel switches. In the physical Colossus the delta in-
puts would already have been combined. For  conceptual 

tially larger. Configurations where more than one 
counter is used would require either a single conven-
tional truth table for each counter, or an unconven-
tional truth table with multiple output columns (one 
for each counter used).

 purity one could construct a larger table, showing bit 
values rather than deltas for each input, but we feel that 
this one is adequate to support our point that any possible 
configuration of the logical conditions set up on Colossus 
to increment a counter could be represented as a single 
truth table.

Run type LC switch not thrown

Spanning 0000 – message end (or limited if a 
slide detected)

Select wheel 
patterns

χ1 = a, χ2 = a (or other trigger)

Wheel-breaking 
panel switches

N/A

Wheel setting 
jacks

χ1 = 1, χ2 = 1

Wheel stepping 
switches

χ1 fast (lower switch down) to control χ2 
slow (lower switch up)

Q selection 
switches

Q = ΔZ + Δχ (or Z + χ if the tape and 
triggers were set up with Δs)

Multiple testing N/A

Q panel See Figure 26

Jackfield Not used

Print setting 
jacks

Include settings for χ1 and χ2 on 
 printer A

Set totals Determined according to message 
length

Control printing Printer A set to > (only print counts that 
exceed set total)

Tab. 1: Configuration of Colossus controls for the 1+2/. run. Tab. 2: Truth table showing the connection to counter 
outputs and logical inputs to the “combining unit”  
of Colossus.

Fig. 26: Q panel configuration for 1+2/. in a hybrid format, imposing the arrows used at the time on a labelled version 
of the Q panel for easier comprehension. Only row 12 is used for this configuration – all switches on other rows  

are left unset.

 +      +    +      + + •

x
(12)

1       2     3      4      51      2    3      4 1      2    3      4       5
Q R Counters

5

Inputs22 Output

Δχ1 Δχ2 ΔZ1 ΔZ2 Counter A

1 1 1 1 1

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 0 1 1 0

1 0 1 0 1

1 0 0 1 1

1 0 0 0 0

0 1 1 1 0

0 1 1 0 1

0 1 0 1 1

0 1 0 0 0

0 0 1 1 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
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4.3 Configuration for the 1+2/. Run with Multiple 
Testing

Multiple testing allows five characters of one wheel 
to be examined at the same time. To convert the basic 
run to use multiple testing, the following changes to 
the basic set-up are required:
1. Define which wheel is going to be on multiple test 

(often χ1)
2. Adjust the switching on the Q panel to use the R 

inputs and all five counters.
3. Set up five counters to record five simultaneous 

counts.

Run type LC switch not thrown

Spanning 0000 – message end (or limited if a 
slide detected)

Select wheel 
patterns

χ1 = a, χ2 = a (or other trigger)

Wheel-breaking 
panel switches

N/A

Wheel setting 
jacks

χ1 = 1, χ2 = 1

Wheel stepping 
switches

χ1 fast (lower switch down) to control χ2 
slow (lower switch up)

Q selection 
switches 

Q = ΔZ + Δχ

Multiple testing χ1 on multiple test

Q panel See Figure 27. Five rows switching 
Ri + Q2 = . and sending result to printer 
A – E

Jackfield Not used

Print setting 
jacks

Include settings for χ1 and χ2 on all 
printers

Set totals Determined according to message 
length

Control printing All printers set to > (only print counts 
that exceed set total)

Tab. 3: Configuration of Colossus controls for the 1+2/. run 
with multiple testing.

Fig. 28: Output of a Colossus run 1+2/. with multiple testing 
(GRT 23D, 84). The row “K1 K2” identifies the two wheels 

being tested. It and the following 9 lines were printed 
automatically by Colossus; the remainder was typed by 

the operator. These rows contain the positions of the two 
wheels, a letter identifying a counter, and the count itself. 

“B 102 3.70” was entered by the operator to confirm the 
correct settings with a measure of statistical significance.

Fig. 27: Q panel configuration for the 1+2/. run, in the original diagram format (GRT 53L(l), 330).
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4.4 Setting Up Colossus to Set Chi Wheels 3, 4, 5 
With 1 and 2 Known

More than one short run could be set up to run at the 
same time. For example, if the settings of the χ1 and χ2 
wheels were known, the other three chi wheels could 
be tested by running the three runs 4=/1=2, 5=/1=2, 
and 3=/1=2 simultaneously. These runs were com-
mon enough that they were known by the abbrevia-
tions C1, C2, and C4, respectively. Table 4 describes 
the set-up for such a run, and Figure 29 (see p. 26) 
shows the switching that would be required on the 
Q panel.

Figure 30 shows actual Colossus output from such 
a run:23 The top row gives the settings of the two 
known wheels, the second row lists the runs being 
carried out, and the third row gives some message 
statistics, including the set total, 751. All these rows 
would have been typed by the operator. When the run 
started, Colossus printed the names of the stepping 
wheels (“k3 k4 k5”) and each following row prints 
a count that is higher than the set total. The setting 
of the appropriate wheel is printed, followed by the 
printer identifier and the score. The run terminated 

23 Small, “Special Fish Report”, p 11.

when the longest wheel, χ3 (i. e. k3), returned to its 
starting position. This meant that some of the scores 
for χ4 and χ5 are printed twice; note that the score for 
the setting 07 of χ4 is printed with the values 752 and 
753. Presumably this is a Colossus run-time error or a 
printer glitch (like the repeated “2” in the χ3 setting 
23, printed as “223”).

4.5 Setting up Colossus for a Character Counting Run

Frequently Colossus was used simply to count char-
acters on a tape. Counts could be carried for any re-
quired subset of the teleprinter alphabet, down to 
single character counts. A frequent occurrence was to 
make a count for all 32 letters to check on the settings 
of the chi wheels. This was done in 8 separate runs, 
each counting 4 characters. (As there were five coun-
ters, it would have been possible to count 32 letters in 
seven runs. We believe that 8 runs were used because 
properties of the teleprinter code made the inter-run 
switching easier if they were done in batches of four.) 
Table 5 and Figure 31 show the configuration for the 
first run of a 32-letter count, which made a count for 
the letters /, 9, H, and T.

Tab. 4: Configuration of Colossus controls to set chi wheels 
3, 4, 5 with 1 and 2 known.

Run type LC switch not thrown

Spanning 0000 – message end (or limited if a 
slide detected)

Select wheel 
patterns

χ1 = a, χ2 = a (or other trigger)

Wheel-breaking 
panel switches

N/A

Wheel setting 
jacks

χ1 = 1, χ2 = 1

Wheel stepping 
switches

χ3 fast (upper switch down), χ4 and χ5 
fast (upper switches up)

Q selection 
switches 

Q = ΔZ + Δχ

Multiple testing Not used

Q panel See Figure 29

Jackfield Not used

Print setting 
jacks

Insert plugs so that printer A counts 
only show settings for χ3, printer B 
for χ4 only, and printer C for χ5 only.

Set totals Determined according to message 
length

Control printing All printers set to > (only print counts 
that exceed set total)

Fig. 30: Output from a Colossus run to set chi wheels 3, 4, 5 
with 1 and 2 known.



26  CRC Media of Cooperation Working Paper Series No. 10 October 2019

1       2     3      4      51      2    3      4 1      2    3      4       5

x      x    x      x       x

Q R Counters
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x
•      •       •     •       •        •

x      x    x      x       x x
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•       •     •       •        • •      
(1)

(2)

+       +     +       +    +

+       +     +       +    +

+       +     +       +    +

+       +     +       +    +

•  

x
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(11)

(12)

(13)

(14)

(15)

≠

•  

x
•  

x
•  

x

Fig. 29: Q panel configuration to set chi wheels 3, 4, 5 with 1 and 2 known. Rows 1, 2, and 11 implement the test C1. Using a different  
technique, rows 12 and 13 implement the test C4 and rows 14 and 15 implement the test C2. Both techniques follow (GRT 53J(f), 325).

Run type LC switch thrown

Spanning 0000 – message end (or limited if a 
slide detected)

Select wheel 
 patterns

All chi wheels set up on selected 
trigger

Wheel-breaking 
panel switches

N/A

Wheel setting jacks All chi wheels set to start at 1

Wheel stepping 
switches

No stepping

Q selection 
 switches 

Q = ΔZ + Δχ

Multiple testing Not used

Q panel See Figure 31

Jackfield Not used

Print setting jacks Plug so that no settings are printed

Set totals Set to 0, so all counts printed

Control printing All printers set to > (only print 
counts that exceed set total)

Tab. 5: Configuration of Colossus controls for a character 
counting run.

Run type LC switch thrown

Spanning Span from n to n+1 to decode 
 character n

Select wheel 
patterns

Set up all wheel patterns on selected 
trigger

Wheel-breaking 
panel switches

N/A

Wheel setting 
jacks

All wheels start at position 1

Wheel stepping 
switches

None set.

Q selection 
switches

Q = Z + χ + ψ (plaintext)

Multiple testing Not used

Q panel See Figure 33

Jackfield Not used

Print setting 
jacks

No printout produced

Set totals N/A

Control printing N/A

Tab. 6: Configuration of Colossus controls for a decoding run.
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An example of Colossus output for a run of this kind is 
shown in Figure 32. The wheel settings were entered 
by the operator. Colossus only printed the digits in 
the counts; the letters identifying the counts were 
probably added later for pedagogic purposes. Appar-
ently the operators knew the letter sequence so well 
that they often didn’t need to write them in.

4.6 Setting up Colossus for a Decoding Run

Colossus is sometimes described as a code-breaking 
machine, whereas in fact it was a machine that made 
counts of bitstreams. However, in December 1944 a 
technique was invented to use Colossus for decoding 
(GRT 74, 450). It was intolerably slow for general use, 
as it produced only one letter of plain text per tape 
cycle and required manual intervention to record 
the letter. Apparently it could take a Wren 1.5 hours 
to produce 41 characters of plain text. However, the 
technique was used as a sanity check on wheel set-
tings before passing the message on to the Testery for 
manual decryption; often, only the first 9 letters of 
plain text would be produced. Table 6 and Figure 33 
show the configuration details for a decoding run.

Each tape cycle looks at one letter, as defined by 
the span control. When the machine stops, each 

Q R Counters

•  •       •     •       •        •

x      x    x      x       x x
•  •       •     •       •        •

x      x    x      x       x x ≠

≠

(1)

(2)

(3)

(4)

1       2     3      4      51      2    3      4 1      2    3      4       5

x      x    x      x       x

5

x
•      •       •     •       •        •

x      x    x      x       x x

≠

•       •     •       •        • •      

≠

Fig. 31: Configuration of the Q panel for the first run of a Colossus character count. 
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≠

(1)

(2)

(3)

(4)

1       2     3      4      51      2    3      4 1      2    3      4       5

x      x    x      x       x
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x
•      •       •     •       •        •
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•       •     •       •        • •      

≠

•  •       •     •       •        •

x      x    x      x       x x ≠
(5)

Fig. 33: Configuration of the Q panel for a Colossus decoding run. 

Fig. 32: Output from a Colossus character counting run. 
Small, “Special Fish Report”, p 15.
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counter will hold 1 if the corresponding bit of the let-
ter is dot, and 0 if it is cross. The operator looks at 
the display, sees that the counts are 11010, say, and 
types the corresponding letter (H) on the printer. The 
resulting printout is illustrated in Figure 34. First, the 
operator presses the “Print Main Headings” switch, 
which causes Colossus to print the wheel settings; 
the following line of decoded characters is entered 
by the operator.

5 What Else Could Colossus Have Done?

The different kinds of runs we have discussed above 
give a good sense of the known applications of Colos-
sus.

When we set out to write and research this report 
our goal was not only to discover what Colossus ac-
tually did but also to determine what it could have 
done if applied to other applications. Its boosters 
have argued that as the first programmable computer 
it deserves a much more prominent place in overview 
histories of computing, but they have not produced 
any comprehensive or rigorous descriptions of its ca-
pabilities as a computer or of the mechanisms used to 
program it. Their argument is that the destruction of 
most of the Colossus machines at the end of the war, 
and the hiding away of the two surviving machines, 
was a tragic and shortsighted blunder that deprived 
Britain of a world-leading source of computer power. 
Had more Colossus machines been spared they could 
have been put to work on many different tasks.24

When we combed the literature for a description 
of what else Colossus could have done, or how it was 
programmed, we found a disappointing lack of spe-

24 The boldest version of this argument is made in the 
discussion of Colossus in B Jack Copeland, Turing: Pioneer 
of the Information Age (New York, NY: Oxford University 
Press, 2013).

cifics. When detailed descriptions of Colossus have 
appeared they are deeply bound up with the minu-
tiae of codebreaking or concerned with the question 
of how the pieces of Colossus could be rearranged 
to build an entirely different machine. As we discuss 
in our paper “Colossus and Programmability”25 Co-
lossus has a unique position in the historiography 
of early computing: it is often claimed to have been 
both programmable and special purpose. This com-
bination of characteristics is rather confusing: a pro-
grammable machine can be instructed to do differ-
ent things, but combining this with “special purpose” 
suggests that there were significant constraints on 
what such programs could do.

It seemed to us that a careful description of how 
Colossus was programmed and what its programs 
could and couldn’t do would help historians to prop-
erly integrate Colossus into the history of program-
ming practice and of computer architecture. Yet our 
inescapable conclusion is that Colossus pioneered 
many of the digital electronic practices used to build 
computers but was, from an architectural viewpoint, 
a different kind of machine entirely. The gap between 
what it did during the war and what it could have 
done if put to service in peace time turned out to be 
much narrower than we had been led to believe.

5.1 The Program Followed by Colossus was Fixed

As we discuss in “Colossus and Programmability,” 
the idea of programmability, or indeed of a pro-
gram, was never used in original Colossus sources. 
Historically, the word “program” was applied only 
to activities in which possible actions were selected 
and sequenced over time. In the Colossus machines 
this basic sequences of events was fixed, and could 
not be changed by its users. We conclude that Colos-
sus followed a program but that, because the overall 
sequence of actions could not be changed, it was not 
programmable. Recall our earlier, Heath Robinson-
derived separation of Colossus family machines into 
reading, combining, and counting units. Parameters 
could be configured for each unit, for example to read 
raw bits or differences, to combine bits from different 
channels, or to set the printing threshold for a par-
ticular counter. But these parameters did not change 
the overall sequence of operations performed. For 
example, a counter value could not influence any 
Colossus action other than the suppression of print-
ing where threshold settings had not been satisfied. 
There was no way to feed an accumulated value back 
into the combining unit, which would make it pos-
sible to change logical conditions applied according 
to information read earlier in an input tape. Without 

25 Haigh and Priestley, “Colossus and Programmability”.

Fig. 34: Output from a Colossus decoding run. The top two  
rows (clipped here) were generated by the “Print Main 
Headings” switch on the control panel (see Section 3.5 

above). The decoded text, which was typed by the opera-
tor, is the line beginning “9BOESE …”. (GRT 23D, 88.)
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this capability, the combining unit had no access to 
state information from one message character posi-
tion to the next.

The only settings that modified the overall struc-
ture of a run were the wheel stepping controls, since 
Colossus would continue trying different start posi-
tions until all combinations of selected wheels were 
evaluated. Or rather, it would illuminate a light once 
all positions had been tried, so that the operator 
knew the run was over. Choosing to step two wheels 
rather than one, or a shorter wheel versus a longer 
one, would change the number of repetitions. In this 
sense the stepping controls altered the overall se-
quence of actions performed, but we see this more 
as akin to changing the “from,” “to,” and “step” val-
ues in a set of nested loops rather than writing a new 
program. In the same way, using a shorter or longer 
message tape would alter the number of message 
characters processed in a single cycle, but could not 
really be called “reprogramming.”

5.2 Colossus’s Simulated Code Wheels Were Specific 
to Fish

This architectural inflexibility was not the only, or 
even necessarily the most important, limitation on 
the practical generality of Colossus. Robinson read 
both of its input streams from tape, meaning that it 
could compare two arbitrary bitstreams (and, if the 
sequence on each was appropriately padded, try ev-
ery possible combination of start positions). So if the 
appropriate tapes were prepared Robinson could be 
used in many different cryptanalytic attacks, even if 
the target code machine had a different architecture. 
Colossus generated the second bitstream electroni-
cally, mirroring the motor controls and wheel lengths 
of the Lorenz cipher machine.

Colossus could be used to count characteristics 
from a single input stream, for example counting the 
occurrence of each of five characters on an input tape. 
But this was a trivial operation, which came nowhere 
near justifying its complexity. Applied to any target 
other than Fish, a Colossus became a Robinson with 
a single input tape. This was not nearly as useful as 
a Robinson with the usual two or more input tapes, 
which explains why codebreakers kept more Robin-
son machines in service after the war than Colossus 
machines. Indeed, new kinds of Robinson were or-
dered by post-War codebreakers. Colossus was well 
adapted to Fish, but would have been almost useless 
against any other coding scheme within major hard-
ware modifications.

One could imagine using the code wheels for other 
applications, as each one stored an arbitrary bit pat-
tern. The psi wheels moved irregularly, but the chi 
wheels stepped together so could be used to store 
a short sequence of five-channel character repre-

sentations and compare these against the bits read 
from tape. The problem was that each of the twelve 
wheels had a different length, and these were hard-
coded into the Colossus hardware. Colossus would 
reset all code wheels once the input tape reached its 
end of message marker, but could not reset individual 
wheels. So there was no way to repeat a sequence on 
all five channels. The shortest chi wheel had only 23 
bits, after which it would start repeating, but the lon-
gest chi wheel was 41 bits long. Bit patterns in each 
individual channel were repeated, but moved out of 
sync with each other. That was exactly how Lorenz 
encryption worked, but in other contexts this feature 
became a profound limitation.

To be fair, it would probably have been feasible to 
retrofit each simulated code wheel on Colossus with 
a switch to set its effective length. Switching the lon-
ger wheels to match the length of the shortest wheel 
in use could repeat a bit pattern across several chan-
nels. Even then, however, Colossus would not be able 
to undertake even a simple operation like “dragging” 
a short crib through a message as it had no way to 
apply logical conditions to sequences of more than 
two characters.

5.3 Could Colossus Be Applied to Mathematics?

As we discuss in “Colossus and Programmability” we 
are not sure that “computer” is the most illuminating 
word to apply to Colossus. Certainly Flowers himself 
preferred other descriptions. Colossus did not sup-
port the basic operations of multiplication and divi-
sion performed by other devices known as “comput-
ers” or “calculating machines,” did not interpret the 
signals on its input tape as numbers, and was never 
applied to any mathematical problems.

In a widely reported aside, Jack Good mentioned 
that “After the end of the war in Europe it was shown 
by Timms that multiplication to base 10 was almost 
possible on Colossus by complicated plugging. I say 
‘almost’ because the calculation could not be com-
pleted in the time between clock pulses …. Although 
there was not much point in doing base-10 multipli-
cation at the time, the capability shows that the ma-
chine was in principle more general purpose than its 
designer intended. Basically this is because ordinary 
calculations can be expressed in Boolean terms.”26

We have spent some time and mental energy trying 
to understand this remark. Colossus could certainly 
count, which means it could add. In the simplest case, 
if one represented the number five as a series of five 

26 Irving John (Jack) Good, “From Hut 8 to the New-
manry”, in Colossus: The Secrets of Bletchley Park's Code-
breaking Computers, ed. Jack Copeland (New York: Ox-
ford University Press, 2006):204–222.
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1s on one channel of the tape and followed it by the 
number 10, represented as a series of 10 1s on the 
same channel, then the sum of 15 could be accumu-
lated in a counter wired to that channel.

Counters could only be incremented, which means 
that we do not see any practical way to implement 
subtraction on Colossus.27 Neither did Colossus have 
any way to represent a negative number in a counter. 
Colossus could combine conditions on several chan-
nels, so if the larger number was always placed on 
one channel (say channel 1) and the smaller number 
on another (say channel 2), Colossus could be set up 
to inhibit counting of 1s from channel 1 if a 1 was also 
present on channel 2. That is a specialized form of 
subtraction, but it does not seem very useful.

Could the plugboard and control panel somehow 
be wired to produce a true binary adder, so that a 1 
read on channel 1 coded for 1, a 1 read on channel 2 for 
2, a 1 read on channel 3 for 4, a 1 read on channel 4 for 
8, and a 1 read on channel 5 for 16? This would be im-
possible for two reasons. It is true that the XOR gates 
provided in the combining unit have been described 
as performing binary addition, and it is true that gates 
of this kind are the building block used to construct 
adders in computers. But yoking XOR gates together 
to build a binary adder requires a carry output, so that 
1+1=0, carry 1. The Colossus XOR gates provided only 
a single output, and the carried bit was lost. Second, 
even if one could build an adder within the combining 
unit there would be no point, as each counter could 
only increment (or not increment) by 1 each time a 
character position on the input tape was processed.

One could simply punch a series of numbers in bi-
nary onto the input tape using the format mentioned 
above and accumulate the total of each channel sepa-
rately: channel 1 into counter 1, channel 2 into coun-
ter 2, and so on. Taking the decimal totals from each 
counter, manually multiplying each as needed (coun-
ter 5 by 16, counter 4 by 8, etc.), and summing the 
results would give the total of all the numbers on the 
tape. The result would certainly be faster than adding 
thousands of numbers by hand, but given the con-
straint that only numbers between 0 and 31 could be 
added, and the fact that numbers could more easily 
be keyed into an adding machine than punched onto 
paper tape, this method would be of no practical use.

If one could not build a binary adder using the 
Colossus plug board it seems rather less likely that 
one could build a binary multiplier, and in any event 

27 Conceptually, subtraction can be carried out via addi-
tion if an appropriate notation is used – as in the arithme-
tic system of two’s complement. But this would hardly be 
practical with counters that reset on reaching the value of 
10,000, necessitating the use of a five-digit ten’s comple-
ment. For example, subtracting 5 from 10 would involve 
reading ten inputs of 1 to set the initial value in the counter, 
then reading 9,995 inputs of 1 to subtract 5.

Good’s comments point to a decimal rather than bi-
nary multiplier. The circuits of the combining unit 
had, as mentioned above, no access to the state in-
formation stored in the counters and so could not 
engage in any mathematical process that required 
storing information from one input bit position to the 
next. Good does not, in any event, seem to expect this 
to happen: his insistence that multiplication must be 
done “in the time between clock pulses” suggests 
that multiplication was somehow expected to occur 
within the combining unit in the time it took to read 
a single character.

We had thought initially that the technique that 
Good had in mind for multiplication might involve 
coding the numbers to be multiplied onto the input 
tape in such a way that they could be combined with 
an ingenious stream of bits held on the electronic 
code wheels to simulate multiplication by repeated 
addition by the time the message tape had been fully 
read. But this would not fit with his implication that 
multiplication would (almost) take place within the 
reading of a single character.

We know of one way that Colossus could have 
multiplied, though this is probably not the method 
referenced by Good as it has no constraints from the 
Colossus clock time. The numbers to be multiplied 
would have been encoded on the electronic chi code 
wheels as a series of bits (five 1s for 5 etc.), with the 
input tape ignored entirely. Colossus could easily 
count the number of 1s on a wheel, by routing the 
appropriate input to a counter. Multiplication would 
take place by setting a logical AND condition so that 
a counter incremented only when a 1 on wheel 1 oc-
curred at the same time as a 1 on wheel 2. After the 
wheels had stepped through all possible combina-
tions the product would have been formed in the 
counter. This method would rely on the ordinary 
motion of the wheels, not the built-in stepping ca-
pabilities used to advance wheel start positions each 
time the message tape cycled. As no inputs would be 
taken from the message tape, the same result would 
be printed each time the message tape cycled until 
the operator paused Colossus. This method would re-
quire a tape whose message length was the product 
of the length of the two chi wheels being used to store 
the numbers. For example, if chi wheels 1 and 2 were 
being used, the tape would have to have exactly 1,271 
characters between its start and end markers. This 
seems like a lot of work to go to in order to multiply 
a number in the range 0–41 by a number in the range 
0–31, but we can see no reason that it would not work.

The larger lesson from this discussion is that Co-
lossus was not useful for computational work. It 
could count but couldn’t subtract. It could multiply 
two very small numbers using a method that would 
have required an infeasible amount of hand plugging, 
and could, reportedly, have almost (but not quite) 
multiplied using an unknown method.
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